

Wind to power

Effects of pressure and density

6-11-2018 4

Origin of wind (in the troposhere)

Origin of wind (in the troposhere)

Global winds

https://earth.nullschool.net/

Measuring wind

To predict wind, we need to study wind behaviour!

- Wind measurements
- Nicolaus Cruquius (1678 1754)

Processing wind data

Onshore wind vs offshore wind

Onshore wind vs offshore wind

13

Wind speed to wind power

14

How to catch the wind

Drag turbine

Lift turbine

Aerodynamic lift

 $\alpha = Angle of attack$

Chord = line between landing edge and tailing edge

Velocity variation

Max tip speed?

Velocity triangle

Finding the optimum operating point

Betz limit

$$C_P = \frac{P_{rotor}}{P_{wind}}$$

Momentum Theorem

Three basic equations:

1. The continuity equation:

mass flow = $rho_i*A_i*u_i = rho_d*A_d*u_d = rho_w*A_w*u_w$ $F = mass flow \times velocity difference \rightarrow dp*A_d = rho*A_d*u_d \times (u_i-u_w) = rho*A_i*u_i \times (u_i-u_w)$ 2. Conservation of momentum:

3. Bernoulli's equation for dynamic pressure $p tot = p' static + 0.5*rho*v^2$

Key assumption: air is incompressible \rightarrow rho = constant

Solution:

$$dp = (p2-p1) = 0.5*rho*(u_i ^2 - u_w^2) = rho*u_d \times (u_i - u_w) \rightarrow u_d = 0.5*(u_i + u_w)$$

Trick:
$$u_d = u_i * (1-a)$$
 \rightarrow $u_w = u_i * (1-2a)$

here: a = induction factor, value between 0 and 1

Cp = Power rotor/Power wind = Force disc * velocity at disc /
$$0.5*$$
rho*A_d*u_i^3 = rho*u d x (u i - u w) *A d*vd / $0.5*$ rho*A d*u i^3

$$= 2*u_d^2 x (u_i - u_w) / u_i^3$$

Apply trick \rightarrow

When is *Cp* greatest?

Betz limit – max. power coefficient

Power curve

6-11-2018

31

Power curve

Wind turbine disaster

- Hornslet wind farm Denmark, February 22, 2008
- Vestas Nordtank NKT 600-180/4
- Faulty braking system
- > 5 times allowed rpm
- Blade fracture causes imbalance

The movie

6-11-2018 40

Design considerations

- 1. Airfoil shape
- 2. Blade twist
- 3. Number of blades vs rotation speed

