

Floating structures

Current wind farms: bottom founded

Deeper waters

- Limited availability of shallow water
- Stronger winds
- New markets

Acciona, 1-Tech, DNV

DE OUDE BIBLIOTHEEK ACADEMY

■ 50-100 m ■ 100+ m

0-50 m

Larger turbines

- Very large turbines are expected in the future
- Monopiles increase exponentially in size
- Jackets are labour intensive

Floating wind

Floating wind

- Less dependent on water depth
- More beneficial for larger turbines
- Ease of installation
- Independence of soil conditions
- Standardized design
- Less noise pollution at installation

Loads

Loads

Loads

Type of loads

- Aerodynamic loads
- Permanent loads
- Hydrodynamic loads

Resulting forces

- Addition of all loads gives
 - Axial force
 - Overturning moment
 - Base shear

BIBLIOTHEEK ACADEMY

Design input for floating structures

- Mostly same as Bottom founded structures
- Motions
- Stability

Motions floating structures

- Translational motions
- Rotational motions

Motions wind turbine

- Turbines allow for smaller motions than ships
- Small rotations at base give large rotations at hub
- Collision of blades and tower

Stability

Axial force

- Permanent load gives axial force
- Compensated by buoyancy

15

Why does a structure float?

Floating body:

Buoyancy = Weight of structure = Weight of displaced liquid

•
$$\Delta = \rho \cdot g \cdot \nabla$$

 Δ = weight of displacement

 ∇ = volume of displacement

Statics

Overturning moment

- Aerodynamic and hydrodynamic loads give overturning moment
- Stable equilibrium of a structure can compensate for this moment

Statics

Floating stability

- GM = KB + BM KG
- Stable: Buoyancy works as a restoring force → GM > 0
- Neutrally stable: Buoyancy and gravity work in line → GM = 0
- Unstable: Buoyancy works as a negative restoring force → GM < 0
- GM is most important design parameter

ACADEMY

Shape or weight stability

Statics

Base shear

- Aerodynamic and hydrodynamic loads give base shear
- Anchoring ensures a restoring force

Statics

Catenary mooring

Restoring forces catenary mooring

Statics

Taut leg mooring

Restoring forces taut-leg mooring

Dynamics

Hydrodynamics Aerodynamics

Wave loading

Dan Russell

Linear wave theory

$$u_n(z,t) = \zeta_{a,n} \cdot \omega_n \cdot \frac{\cosh k_n(z+d)}{\sinh k_n d} \cdot \sin(\omega_n t + \varepsilon_n)$$

$$\dot{u}_n(z,t) = \zeta_{a,n} \cdot \omega_n^2 \cdot \frac{\cosh k_n(z+d)}{\sinh k_n d} \cdot \cos(\omega_n t + \varepsilon_n)$$

Broad vs Slender bodies

Floating solutions

Semi submersible

- Buoyancy from pontoons
- Spacing between pontoons provides stability
- Extra dampening possible using various techniques

Semi submersible

- Pros:
 - Easy to transport
 - Onshore turbine assembly
 - Low draft
- Cons:
 - High structural cost
 - Complex steel structure

WindFloat

Current project: WindFloat

- 2MW prototype
- Currently commissioning of 25 MW farm
- Active ballasting in the columns
- Damping plates on the bottom of the columns

WindFloat

Spar

- Deep draft design reduces wave loading
- Ballast in the lowest part of the structure provides stability

Spar

- Pros:
 - Simple design
 - Easy fabrication
- Cons:
 - Offshore turbine assembly
 - Large draft

Hywind

DE OUDE
BIBLIOTHEEK
ACADEMY

Current project: Hywind

- First floating windfarm realized!
- 5x6 MW
- Depths up to 800m possible
- Pitch control actively stabilizes the system

Hywind

Tension Leg Platform (TLP)

- Large buoyancy force provides stability
- Tethers (lines) with high axial stiffness
- Virtually no vertical motions

Tension Leg Platform (TLP)

- Pros:
 - Onshore turbine assembly
 - Low structural mass
- Cons:
 - Challenging transport and installation
 - High loads on mooring and anchoring system

GICON

Current project: GICON

- 4 linked columns anchored to seabed
- New design for depths up to 350m

DE OUDE BIBLIOTHEEK ACADEMY

GICON

6-11-2018 40

Benefits of floating wind

- Beneficial for larger turbines and larger water depth
- Linear increase of cost with depth instead exponential
- Same design for larger turbines
- Technically feasible

41

Main barriers

- Platform size and weight
- Platform production rate
- Installation procedures
- High cost of early demonstration
- Long-term uncertainty blocks investments

