

Case: energy yield calculation

DE OUDE BIBLIOTHEEK ACADEMY

Start with:

- Wind data (site specific, supplied)
- Turbine specifications

End with:

- Number of households that can be supplied with one turbine
- Return rate of wind turbine (years)

Important parameters

$$P = C_P \frac{1}{2} \rho U_\infty^3 \pi R^2$$

• Maximum power coefficient $C_{P,max}$:

$$C_P = \frac{P_{rotor}}{P_{wind}(A_{rotor})}$$

- Availability which percent of the time is the turbine producing power
- Capacity factor how much of the turbine power capacity is used

6-11-2018

ASSIGNMENT

Instructions

1	Go to the Excel calculation sheet. Choose a wind turbine from the fact sheet and fill in the following parameters:				
	Turbine type	***			
	Rated power				
	Rotor diameter				
	Cut-in wind speed				
	Rated wind speed				
	Cut-out wind speed				
	Hub height above mean sea level				
2	Write down the equation for the wind turbine power curve:				
3	In the wind profile section, a dropdown menu can be used to choose between two locat	ions. What differences can be observed between the			
	different wind profiles and what is the physical explanation for these differences?				
4	Which wind speed yields the most electric energy and why is this the case? (Hint: Use	ta ble 1)			
5	Which location has a more favorable wind profile for the offshore wind turbine that you	selected?			
6	What is the meaning of the term "capacity factor"?				
7	Placing the largest wind turbine is not always the best option, why is this?				

6-11-2018 5

Case: Energy yield

Excel sheet

Turbine specifications

rai bille specifications		
Wind turbine (brand/type)		
Rated power	P _{rated}	[kW]
Rotor diameter	D rotor	[m]
Cut-in wind speed	V cut in	[m/s]
Rated wind speed	V rated	[m/s]
Cut-out wind speed	V _{cut-out}	[m/s]
Hub height	Z hub	[m]
Rotor area	A rotor	0 [m²]
Power coefficient	Cp max	0.00 [-]

Wind profile

Location	K13	3
Air density	P air	1,225 [kg/m ³]
Weibull shape factor	k	2,10 [-]
Weibull scale factor	V	0,90 [-]
Mean wind speed at 10m	U mean, 10	7,44 [m/s]
Mean wind speed at hub height	U mean,hub	0,00 [m/s]

Energy yield

Annual energy consumption per household	E hh	3340	[kWh]
Average availability	a avq	95%	[%]
Time period of one year	Tyear	8766	[h]
Total energy yield of one year	E annual	-	[kWh]
Enough for households:	N hh	0	[-]
Capacity factor	f _c	0%	[-]

Financial

Internal rate of return	0,0	[years]
Annual return on investment	0,00	[M€]
Total energy price		[€/kWh]
Subsidy for wind energy	0,130	[€/kWh]
Long term estimated energy price		[€/kWh]
Annual costs	0,00	[M€]
Annual operating costs (over a 20 year period)	0,00	[M€]
Annual interest rate (over a 20 year period)	0,00	[M€]
Installation cost of this offshore wind turbine		[M€]
Interest rate on initial investment	5%	[% of CapE
Cost of operating an offshore wind turbine (OpEx)		[% of CapE
Costs of installing an offshore wind turbine (CapEx)	2,50	[M€/MW]
rmanciai		

6-11-2018

Case: Energy yield

Excel sheet

Turbine specifications

Wind turbine (brand/type)			
Rated power	Prated	4000	[kW]
Rotor diameter	D _{rotor}	110	[m]
Cut-in wind speed	V _{cut-in}	2	[m/s]
Rated wind speed	V _{rated}	12	[m/s]
Cut-out wind speed	V cut-out	24	[m/s]
Hub height	Z hub	75	[m]
Rotor area	A rotor	9503	[m ²]
Power coefficient	Cp _{max}	0,40	[-]

Wind profile

Location	K13		
Air density	P air	1,225	[kg/m ³]
Weibull shape factor	k	2,10	[-]
Weibull scale factor	γ	0,90	[-]
Mean wind speed at 10m	U mean, 10	7,44	[m/s]
Mean wind speed at hub height	U mean huh	9,29	[m/s]

Energy yield

Annual energy consumption per household	E hh	3340 [kWh]
Average availability	a _{avq}	95% [%]
Time period of one year	Tyear	8766 [h]
Total energy yield of one year	E annual	15.830.143 [kWh]
Enough for households:	N hh	4740 [-]
Capacity factor	f _c	45% [-]

Financial

Internal rate of return	16,7	[years]
Annual return on investment	0,79	[M€]
Total energy price		[€/kWh]
Subsidy for wind energy		[€/kWh]
Long term estimated energy price		[€/kWh]
Annual costs	0,19	[M€]
Annual operating costs (over a 20 year period)		[M€]
Annual interest rate (over a 20 year period)		[M€]
Installation cost of this offshore wind turbine	10,00	
Interest rate on initial investment		[% of CapE
Cost of operating an offshore wind turbine (OpEx)	25%	[% of CapE
Costs of installing an offshore wind turbine (CapEx)	2,50	[M€/MW]
Financial		

6-11-2018

